
Performance Testing and Improvement in Agile

Ananya Shrivastava
Research scholar
CSE Department

S.V.I.T.S., Indore, India

Dr. Dinesh C. Jain

Reader
CSE Department

S.V.I.T.S., Indore, India

Abstract- There is always scope for performance improve-
ment in any application. But, how do we know where and how
to improve?
This paper is meant to equip social control and technical per-
sons with an end to end understanding and knowhow to im-
plement performance testing of web applications concerning
their project requirements. It explores and helps in deciding
how and when a performance test is beneficial. From basic
principles to regard to Agile platform to the sum of implemen-
tation with examples constitutes this paper. We have our dark
areas for improvements. We pin pointed those areas. Now,
how do we improve on those areas? How do we manage this
whole performance improvement through process? Get on the
interesting and information rich text read what awaits ahead!

Keyword: Performance Testing, Agile platform, Project re-
quirement.

I. INTRODUCTION
Performance testing is a type of testing intended to deter-
mine the responsiveness, throughput, responsible-ness, and
quantifiability of a system below a given workload. Per-
formance testing is commonly conducted to accomplish the
following:
 Assess production readiness
 Evaluate against performance criteria
 Compare performance characteristics of multiple sys-

tems or system configurations
 Notice the supply of performance issues
 Support system tuning
 Find throughput levels

II. PERFORMANCE MODEL
There are various well-known methodologies available for
performance evaluation of computer systems. The overall
performance of any system mainly depends on three
models
 Workload model
 Performance model
 Cost model

 Workload model

The workload model captures the resource demands
and workload intensity characteristics of the load
brought to the system by the different types of transac-
tions and requests.

 Performance model
The performance model is employed to predict re-
sponse times, utilization, and throughputs, as a func-
tion of the system description and workload parame-
ters.

 Cost model
The cost model accounts for software package, hard-
ware, network-communications and support expendi-
tures

III. WHY DO PERFORMANCE TESTING?

At the best level, performance testing is
nearly continually conducted to handle one
or additional risks associated with expense, chance prices,
continuity, and/or company name. Specific reasons for
conducting performance testing include:
 Assessing adequacy of developed software pack-
age performance by:
o Determining the application’s desired performance

characteristics (mar holf dozen) before and once
changes to the software package.

o Providing comparisons between the application’s cur-
rent and desired performance characteristics.

 Improving the potency of performance standardiza-
tion:
o Analysing the behaviour of the applying at varied load

levels.
o Identifying bottlenecks within the application.
o Providing info associated with the speed, quantifiabil-

ity, and stability of a product prior to production re-
lease, so sanctioning you to make informed decisions
about whether and when to tune the system

IV. PROJECT CONTEXT
For a performance testing project to achieve success, each
the approach to testing performance and also the testing
itself must be relevant to the context of the project. Per-
formance testing is bound to focus on only those items that
are relevant for achieving overall project success. This
might embody, however is not restricted:
 The general vision or intent of the project
 Performance testing objectives
 Performance success criteria
 The project schedule
 The project budget
 Available tools and environments
 The ability set of the performance tester and also the

team
 The V-shaped model should be utilized for small to

medium sized projects where requisites are not vaguely
defined and is fixed.

 The V-Shaped model should be opted when ample
technical resources are present with needed technical
expertise.

Ananya Shrivastava et al | International Journal of Computer Science Engineering and Technology(IJCSET) | July 2014 | Vol 4, Issue 7,217-222

www.ijcset.net 217

High confidence of customer is required for opting the V-
Shaped model approach. Since, no prototypes are engen-
dered, there is a very high peril involved in meeting cus-
tomer expectations.

V. CORE ACTIVITIES OF PERFORMANCE TESTING
The performance testing approach consists of the following
activities:
(i) Activity 1. Identify the Test Environment.

 Identify the physical test environment and the produc-
tion environment as well as the tools and resources
available to the test team. The physical environment
includes hardware, software, and network configura-
tions. Having a radical understanding of the complete
check setting at the outset enables more efficient test
design and planning and helps you identify testing
challenges early in the project. In some situations, this
method should be revisited periodically throughout the
project’s life cycle.

Fig:1 Core Activities Of Performing Testing

(ii) Activity 2. Identify Performance Acceptance Crite-

ria.
Identify the response time, throughput, and resource
utilization goals and constraints. In general, response
time is a user concern, throughput is a business con-
cern, and resource utilization is a system concern. Ad-
ditionally, identify project success criteria that may not
be captured by those goals and constraints; for exam-
ple, using performance tests to evaluate what combina-
tion of configuration settings will result in the most de-
sirable performance characteristics.

(iii) Activity 3. Plan and Design Tests.
Identify key scenarios, determine variability among
representative users and how to simulate that variabil-
ity, define test data, and establish metrics to be col-

lected. Consolidate this information into one or more
models of system usage to be implemented, executed,
and analysed.

(iv). Activity 4. Configure the Test Environment.
Prepare the test environment, tools, and resources nec-
essary to execute each strategy as features and compo-
nents become available for test. Ensure that the test
environment is instrumented for resource monitoring
as necessary.

(v). Activity 5. Implement the Test Design.
 Develop the performance tests in accordance with the
test design.

(vi). Activity 6. Execute the Test.
Run and monitor your tests. Validate the tests, test
data, and results collection. Execute validated tests for
analysis while monitoring the test and the test envi-
ronment.

(vii). Activity 7. Analyse Results, Report, and Retest.
Consolidate and share results data. Analyze the data
both individually and as a cross-functional team. Re-
prioritize the remaining tests and re-execute them as
needed. When all of the metric values are within ac-
cepted limits, none of the set thresholds have been vio-
lated, and all of the desired information has been col-
lected, you have finished testing that particular sce-
nario on that particular configuration.

VI. KEY TYPES OF PERFORMANCE TESTING

(i) Performance test:
 A performance test is a technical investigation done to

determine or validate the responsiveness, speed, scal-
ability, and/or stability characteristics of the product
under test.

 To determine or validate speed, scalability, and/or sta-
bility

(ii) Load Test:
 Load testing is conducted to verify that your applica-

tion can meet your desired performance objectives;
these performance objectives are often specified in a
service level agreement (SLA). A load test enables you
to measure response times, throughput rates, and re-
source-utilization levels, and to identify your applica-
tion’s breaking point, assuming that the breaking point
occurs below the peak load condition.

 Endurance testing is a subset of load testing.
An endurance test is a type of performance test focused
on determining or validating the performance charac-
teristics of the product under test when subjected to
workload models and load volumes anticipated during
production operations over an extended period of time.

 To verify application behaviour under normal and peak
load conditions.

(iii) Stress test:
 The goal of stress testing is to reveal application bugs

that surface only under high load conditions. These
bugs can include such things as synchronization issues,
race conditions, and memory leaks. Stress testing en-
ables you to identify your application’s weak points,
and shows how the application behaves under extreme
load conditions.

Ananya Shrivastava et al | International Journal of Computer Science Engineering and Technology(IJCSET) | July 2014 | Vol 4, Issue 7,217-222

www.ijcset.net 218

 Spike testing is a subset of stress testing. A spike
test is types of performance test focused on deter min-
ing or validating the performance characteristics of the
product under test when subjected to workload models
and load volumes that repeatedly increase beyond an-
ticipated production operations for short periods of
time.

 To determine or validate an application’s behaviour
when it is pushed beyond normal or peak load condi-
tions.

(iv)Capacity test:
 Capacity testing is conducted in conjunction with ca-

pacity planning, which you use to plan for future
growth, such as an increased user base or increased
volume of data. For example, to accommodate future
loads, you need to know how many additional re-
sources (such as processor capacity, memory usage,
disk capacity, or network bandwidth) are necessary to
support future usage levels.

 Capacity testing helps you to identify a scaling strategy
in order to determine whether you should scale up or
scale out.

 To determine how many users and/or transactions a
given system will support and still meet performance
goals.

VII. AGILE PERFORMANCE TEST CYCLE

Fig:2 Agile Performance Test Cycle

 Activity 1. Understand the Project Vision and Con-
text.
The outcome of this activity is a shared understanding
of the project vision and context.

 Activity 2. Identify Reasons for Testing Perform-
ance.
Explicitly identify the reasons for performance testing.

 Activity 3. Identify the Value Performance Testing
Adds to the Project.
Translate the project- and business-level objectives
into specific, identifiable, and manageable perform-
ance-testing activities.

 Activity 4. Configure the Test Environment.
Set up the load-generation tools and the system under
test, collectively known as the performance test envi-
ronment.

 Activity 5. Identify and Coordinate Tasks.
Prioritize and coordinate support, resources, and
schedules to make the tasks efficient and successful.

 Activity 6. Execute Task(s).
Execute the activities for the current iteration.

 Activity 7. Analyze Results and Report.
Analyze and share results with the team.

 Activity 8. Revisit Activities 1-3 and Consider Per-
formance Acceptance Criteria.
 Between iterations, ensure that the foundational in-
formation has not changed. Integrate new information
such as customer feedback and update the strategy as
necessary.

 Activity 9. Reprioritize Tasks.
Based on the test results, new information, and the
availability of features and components, reprioritize,
add to, or delete tasks from the strategy, and then re-
turn to activity 5.

VIII. PERFORMANCE TESTING USING VISUAL STUDIO UL-

TIMATE 2012
Following the generic process and principals described
above we can have a more specific flow of actions to be
followed while conducting performance testing activity
using Visual Studio Ultimate. Just like a very simple tool
like HTTP Watch VS records the HTTP requests sent using
methods like GET or POST. What VSTS offers is an auto-
mated and end to end testing experience with further con-
figurability and extensibility. Details are given below:

Fig:3 Process of Web testing

Iterative Performance Testing activities

i. Understand Project Vision and Context

ii. Identify Reasons for Testing Performance

iii. Identify Value of Testing Performance

iv. Configure Test Environment

v. Identify and Coordinate Task

vi. Execute Task(s)

vii. Analyze Results and Report

viii. Revisit Activities 1-3 and Consider Perform-
ance Acceptance Criteria

ix .Reprioritize Tasks
Run web
test

Analyse
result

Create
Web ap-

Record
web test

Insert
rules and
h k

Ananya Shrivastava et al | International Journal of Computer Science Engineering and Technology(IJCSET) | July 2014 | Vol 4, Issue 7,217-222

www.ijcset.net 219

(i) Recording a Web Test
VSTS Web Testing supports activity recording, as long as
there exists an internet site to record against. To record
activities of an internet application, we are able to produce
a brand new take a look at project or use an existing one.
Adding a web test case is more specific to web testing.
When it is added, an activity recorder is started in which we
can browse the web application like browsing through a
normal browser.
On the address bar, we can enter the URL of the personal
website, including the port selected by the ASP.NET De-
velopment Server. Browsing to this location will be re-
corded in the Web Test Recorder explorer bar; as would
any other URLs that are entered. Once the desired tests
have been recorded, we can close the browser windows and
save the test. The project will automatically include the
Web test case file along with each of the recorded requests.
(ii)Customization
Selecting any of the nodes within the Web Test tree will
allow you to modify the data inside the Properties window.
You can also group requests together using a transaction.
Be careful not to confuse the term "transaction" with a pro-
gramming concept in which state is committed or not
committed as a unit. Within Web test cases, transactions
only encapsulate actions into a group that can later be enu-
merated using code. Also, transactions are used when re-
porting on load—how many transactions per second, for
example.
(iii)Using the Web Test Viewer to Verify a Web Test
Before adding a Web test to a load test, and running it for a
long period of time, it is important to be sure that the test
works exactly as intended. This is where the Web test
viewer comes in to consideration. The Web test viewer
allows you to watch a Web test as it runs, and to view all
aspects of a previous test run.
Verifying a newly-created Web test goes beyond looking at
the outcome of the test run and seeing whether it passed.
For example, for a Web test without validation rules
passed, means that no exceptions were thrown, no rules
failed, and no HTTP errors occurred. Verification includes
making sure the Web test exhibits the correct behavior on
the target Web application, in addition to executing without
any errors. It is important to review the response for each
request to make sure that it is correct.
(iv)Running a Web Test Case
After recording a test you are ready to begin executing it.
To execute all the tests within a project, simply run the
project. This will open up the Test Results windows and
mark each test as pending while it is in progress, and
Passed/Failed once execution completes. Test selection and
execution is also available from the Test Manager and Test
View windows.
Individual Web test files (test cases or test fixtures) can
also be run by opening them up and clicking the Run but-
ton.
Requests can also provide credentials for logging on to the
targeted site using standard authentication methods. The
dialogs for credentials allow for loading the login data from
a data source.
Each result from a request is saved, and selecting each re-

quest allows you to navigate its detail, viewing the resulting
page's HTML or raw request/response text.
As part of a test execution, the Web test engine verifies if
all the URLs on the page are valid links. These links appear
as child nodes below the request show the HTTP status
returned by a request to each of the URLs.

(v)Request Rules
Although checking for valid hyperlinks on a response page
is a useful feature, it is not sufficient in validating that the
page is functioning correctly. For example, on entering
valid credentials, the Web test needs to verify that the login
was successful. Similarly, when the credentials are invalid,
you need to check that an appropriate error message is dis-
played on the page. To support this, each Web request can
include extraction rules and validation rules.
(vii)Binding Test Data to a Data
Source(Parameterization)
Both validation and extraction rules provide for text entry
within the Properties window of virtually every node.
However, the fact that the text can be pulled from a data-
base makes Visual Studio Web Test powerful. This means
we can define a collection of inputs that do or don't con-
form to the specified requirements.
To test using a data source, we can click the Add Data
Source button on the toolbar of the Web test. In the ensuing
dialog box, specify an OLE DB Provider, perhaps using an
*.mdf file that can also be added to the test project. After
opening the database in the server explorer, we define a
table that will contain the necessary test data.
Once a test has been configured with a data source, it is
necessary to return to the Edit Run Settings dialog box and
change the run count to one run per data source row. In this
way, the test will repeat for each row in the newly config-
ured data source, and during each run, the parameters asso-
ciated with the data source will be assigned the value in the
column for the particular row going to customize a test
doing so provides a great starting point for customization of
a particular Web test case, or even multiple cases, with a
little refactoring.

IX. CONTINUOUS IMPROVEMENT AFTER TESTING
(i) Profilers:
After we have analysed test reports after the test runs for
the performance we get to know where the performance is
hit badly and needs improvements. What we get actually is
the HTTP request turnaround time and reliability issues for
a particular HTTP request which is a part of web test script.
These requests translates to in part or whole to the
scenarios that we have identified in the planning phase to
be tested.
For the performance hit scenarios, there could be any
reason: configuration of the application, network related
issues, issue with core codebase, the APIs or the database
querying and fetching results.
Profilers: There are third party Profilers for both database
and code that can be employed to further zero down the
cause of performance hit. Some platforms such as Visual
Studio suit also provides inbuilt profilers for code part.

Ananya Shrivastava et al | International Journal of Computer Science Engineering and Technology(IJCSET) | July 2014 | Vol 4, Issue 7,217-222

www.ijcset.net 220

Hammer DB is another tool that can be employed to zero
down the gap areas in the database.
Making use of these profilers Development team can
quickly find and start improving on the code and database
part.
(ii) Automated Builds:
Another action point that can be employed to further im-
prove the productivity is to automate your triggering of

web tests scenarios using a custom code piece. As evident
with the case of Visual Studio, automated build definitions
can be created to automatically trigger the web tests. This
can further be integrated with every fresh build of your
application and thus after analyzing the results from the test
we have a better grip on what change is effecting the
performance of the application.

X. COMPARISON/RELATIONSHIP TO CORE PERFORMANCE TESTING ACTIVITIES

 Fig:4 Relationship to core Performance activities

XI. CONCLUSION:
Web performance testing is a must for every application in
almost all the cases where reliability, scalability and turn-
around time is at stake. Not considering these parameters
related to your application can translate to heavy losses in
terms of brand and finances.
 The generic model of process to follow the perform-

ance testing is well co related to the new and widely
popular Agile platforms.

 Web performance using Visual Studio not only gives
the user an easy to use experience but also extended
and configurability at their disposal.

 Various profilers can be employed to further zero
down the dark areas for improvement. Integrated
automated build definitions are further action points
and advantage to finally get a near perfect application
with respect to performance.

Iterative Performance Testing activi‐

ties

i. Understand Project Vision and Context

ii. Identify Reasons for Testing Performance

iii. Identify Value of Testing Performance

iv. Configure Test Environment

v. Identify and Coordinate Task

vi. Execute Task(s)

vii. Analyze Results and Report

viii. Revisit Activities 1-3 and Consider Per-
formance Acceptance Criteria

ix .Reprioritize Tasks

Ananya Shrivastava et al | International Journal of Computer Science Engineering and Technology(IJCSET) | July 2014 | Vol 4, Issue 7,217-222

www.ijcset.net 221

REFERENCES:
1. msdn Microsoft.com
2. Ron Patton ,Software Testing
3. Stackoverflow.com
4. Paul C.Jorgensen ”Performance modle” Tim Koomen, Martin pol
5. http://www.testingreference.com/testinghistory.php Scott Loveland

Geoffrey Miller, Richard Prewitt ,Michael Shannon
6. Marnie L. Hutcheson ”Performing Testing”
7. vsptqrg.codeplex.comwww.xoriant.com/blog/type- performance-

testing-and-key-issues ”core activities of performing testing”

8. blog.nwcadence.com/web-performance-and geek-
swithblogs.net/.../load-and-web-performance-testing-using-visual
stload

9. Hp software developers Blogs”Agile Performance testing lifecycle “
http://www.agileload.com/performance-testing/performance-testing-
methodology/performance-testing-in-the-agile-process

10. Beck, Kent; et al. (2001). “Manifesto for Agile Software Develop-
ment”. Agile Alliance.Retrieved14 June 2010. ."Visual testing of
software – Helsinki University of Technology"(PDF). Retrieved
2012-01-13”web test using visual studio”www.visualstudio.com/en-
us/get-started/load...

Ananya Shrivastava et al | International Journal of Computer Science Engineering and Technology(IJCSET) | July 2014 | Vol 4, Issue 7,217-222

www.ijcset.net 222

