
Specification of Important Features in
 Fault Tolerance for Distributed Systems

Amir Massoud Bidgoil#1, Ali Pajoohanfar*2, Maryam Amanifar†3

#Department of computer engineering ,Islamic Azad University, Tehran North Branch, Tehran, Iran

am_bidgoli@iau-tnb.ac.ir
*SAMA Technical and Vocational Training college, Islamic Azad University, Ahvaz, Iran

a.pajooh@gmail.com
†Khoramshahr Branch, Islamic Azad University, Khoramshahr, Iran

m.amanifar@khouzestan.srbiau.ac.ir

Abstract— Performance of a checkpointing based
multiple fault tolerance is low. The main reason is
overheads associate with checkpointing. A checkpointing
algorithm can be improved by improved storing strategy
and checkpointing scheduling. Improved storage strategy
and checkpointing scheduling will reduce the overheads
associated with checkpointing. Performance and efficiency
is most desirable feature of recovery based on
checkpointing. In this paper important critical issues
involved in fast and efficient recovery are discussed based
on checkpointing. Impact of each issue on performance of
checkpointing based recovery is also discussed.
Relationships among issues are also explored. Finally
comparisons of important issues are done between
coordinated checkpointing and uncoordinated
checkpointing.

Keywords- Checkpointing, Distributed System, Recovery,
Fault Tolerance

I. INTRODUCTION

Checkpoint with rollback-recovery is a well-known
technique to tolerate process crashes and failures in
distributed system. In order to tolerate crash of process
failure one of approach is create a new process of that
process with same state. This can be done if state and
complete description of all processes executing in
distributed environment must be saved on stable stored
time and time and when any crash failure of processes
are detected this save checkpoints are used to crate new
processes identical to crashed processes and this way
multiple process crashed can be tolerated. Checkpoint is
an operation which stores the current state of
computation in stable storage. Checkpoints are
established during the normal execution of a program
periodically. This information is saved on a stable
storage so that it can be used in case of node failures.
The information includes the process state, its
environment, and the value of registers. A fundamental
goal of any rollback recovery protocol is to bring the
system into a consistent state when inconsistencies
occur because of a failure [1]

II. TYPES OF CHECKPOINTING AND

CORRESPONDING RECOVERY ISSUES

Coordinated checkpoint and uncoordinated
checkpoint associated with message logging are the two

main techniques used for saving the distributed
execution state and recovering from system failures [2].

A. Coordinated checkpoint

In coordinate check point processes coordinate their
checkpoints in order to save a system-wide consistent
state. Coordinate check points are consistent set of
checkpoints. These consistent check points are used to
bound rollback propagation. Consistency is more in case
of coordinate check points due to consistent set of
checkpoints [3].

 Coordinated checkpoint involves the rollback check
point of all processes from the last snapshot when a
faulty situation is detected, even when a single process
crashes. For this reason recovery time is very large and
it makes unsuitable for real time applications. In case of
frequent failures and multiple faults coordinate check
point technique can not be used. Performance can be
improved by decreasing the recovery time .Main reason
for large recovery time is restarting all the initial state.
Recovery time can be reduced by enabling the restart
from last correct state instead of from very first state.
There must be some mechanism to ensure restarting
from last correct state will reach a state matching the
rest of the system, as before the crash. Checkpointing is
only taken when all process agree for a consistent state.
There are two main ways to implement coordinate
checkpointing; blocking and none blocking. Blocking
checkpointing consists of stopping the computation to
take the global state. This permits better control on the
state of the different processes and their communication
channels. The second one, called non-blocking
coordinated checkpointing, does not provide this kind of
control, but does not require the interruption of the
computation [4].

 B. Uncoordinated checkpoint with message logging

 In Uncoordinated checkpoint protocols, all processes
execute a checkpoint independently of the others so that
recovery can be done independently with each other.
There is a big question if checkpoints are taken
independently than how complete and overall
description and order of process execution is determined.
One way is uncoordinated checkpointing is combined
with message logging.

Amir Massoud Bidgoil et al IJCSET |February 2012| Vol 2, Issue 2,908-912

908

Message logging is a common technique used to
build systems that can tolerate process crash failures.
These protocols require that each process periodically
records its local state and log the messages received
since recording that state. Message logging stores all
interprocess messages in order to bring checkpoint up to
date. When a process crashes, a new process is created
in its place: the new process is given the appropriate
recorded local state, and then it replays the logged
messages in the order they were originally received
[5].Message logging is combined with uncoordinated
checkpoint to restart the system from last correct state.
It is combined with message logging to ensure the
complete description of a process execution state in case
of its failure. Besides logging of all received messages,
re-sending the same relevant messages in the same order
to the crashed processes during their re-execution is also
main function of message logging. There are three kinds
of message logging protocols: optimistic, pessimistic
and causal. Pessimistic protocols ensure that all
messages received by a process are logged on reliable
media before it sends information in the system. Logged
information on reliable media can be re-sent later and
only if necessary during rollback. Message logging
optimistic protocols just ensure that all messages will
eventually be logged. So, one usual way to implement
optimistic logging is to log the messages on non-reliable
media. Causal protocols log message information of a
process in all causally dependent processes [6].

Uncoordinated checkpointing when used with
message logging having fast recovery since restart is
from last consistent state not from initial sate as in case
of coordinate checkpointing. Since checkpointing is
done independently hence multiple faults can be
handled by this approach which can not be handled by
coordinated checkpointing.

III. ISSUES WITH CHECKPOINTING BASED

RECOVERY: IN THIS SECTION WE DISCUSSED

CRITICAL AND IMPORTANT ISSUES

RELATED TO CHECKPOINTING BASED

FAULT TOLERANCE

A. Recovery cost

Conventional rollback-recovery protocols redo the
computation of the crashed process since the last
checkpoint on a single processor. As a result, the
recovery time of all protocols is no less than the time
between the last checkpoint and the crash. Researcher
proposed a new application-level fault-tolerant approach
for parallel applications called the Fault-Tolerant
Parallel Algorithm (FTPA), which provides fast self-
recovery. When fail-stop failures occur and are detected,
all surviving processes recomputed the workload of
failed processes in parallel. FTPA, however, requires
the user to be involved in fault tolerance. In order to
ease the FTPA implementation, Researcher developed
Get it Fault-Tolerant (GiFT), a source-to-source
precompiled tool to automate the FTPA implementation.
Researcher evaluates the performance of FTPA with
parallel matrix multiplication and five kernels of NAS
Parallel Benchmarks on a cluster system with 1,024

CPUs. The experimental results show that the
performance of FTPA is better than the performance of
the traditional check pointing approach due to fast
recovery [7].However this is only suitable for large
problem. If the problem size is not large enough, not all
processes will contribute to parallel recomputing.

B. Adaptiveness

A fault tolerance technique is expected to have the
capability of dynamically adapting to distinct runtime
conditions. The capability of dynamically adapting to
distinct runtime conditions is an important issue. One of
way by which a fault tolerant technique can be made
dynamic is by an adaptive programming model [8]. This
programming model is hybrid, composed by a
synchronous part (where there are time bounds on
processing speed and message delay) and an
asynchronous part (where there is no time bound). There
is further research scope to develop more adaptive
programming model to make fault tolerance technique
more adaptive to dynamic situation. In case of fault, the
most important issue is efficient recovery in dynamic
heterogeneous systems. Recovery under different
numbers of processors is highly desirable. The fault
tolerant and recover approaches must be suitable for
applications with a need for adaptive or reactionary
configuration control. Researcher proposed flexible
rollback recovery in dynamic heterogeneous computing
for such crucial requirements [9]. Still overhead of this
technique is significant and need to be address further.
Performance of any fault tolerant technique depends
upon recovery time. Adaptive checkpointing is required
to cope with volatile dynamic environment.

C. Multiple fault capability:

Multiple fault handling in distributed system is very
crucial. In case of multiple faults, most of existing
techniques have not enough provision or capability to
handle multiple faults. Even, if enough capable to
handle multiple faults than with low and unacceptable
performance. Single point failure must be taken
seriously while designing the multiple fault tolerance
technique. Some multiple fault tolerant algorithms are
based on optimistic or causal message logging approach.
One approach to handle this critical issue suggested by
researcher is use of uncoordinated checkpoint,
distributed message logging and uses a reliable
coordinator and checkpoint servers. In real situation,
none of their existing implementation tolerates more
than one fault. There is strong need for proper
augmentation by appropriate mechanisms. Restart of
full system in case of multiple faults is also a major
disadvantage in terms of performance due to high
recovery time. Thus optimistic or causal message
logging required some mechanism to start from last
checkpoint instead of restart. This problem can be
overcome by using pessimistic message logging
principle. In pessimistic message logging principle
based algorithms, all in transit messages are stored on
reliable media. In such a case recovery does not
required restart Thus it reduces the recovery time on
cost of large number of non computational reliable
resources. Costs of such resources are very high

Amir Massoud Bidgoil et al IJCSET |February 2012| Vol 2, Issue 2,908-912

909

[10].Coordinate checkpointing can not handle multiple
faults but uncoordinated with message logging can
handle the multiple faults. In order to tolerate multiple
faults using checkpointing and recovery, three critical
functionalities that is necessary for fault tolerance: a
light-weight failure detection mechanism, dynamic
process management that includes process migration
and a consistent checkpoint and recovery mechanism.
Hugo Jung et al. proposed a technique to address this
critical functionality [1].

D. Performance

But in case of uncoordinated checkpointing with
message logging is based on piecewise information that
need be making integrated information to recover the
system. Most recent consistence state is constructed
with this piecewise information. Storing of these piece
wise information adversely affect the failure free
performance, bandwidth and latency. The root cause of
these is overheads for collecting this piece wise
information in non failure environment and construction
of most consistence state in multiple faults case.
Coordinate checkpointing although incapable of
handling multiple faults but overhead are low.
Coordinate checkpointing are simple than uncoordinated
checkpointing [9]. Run time must be low for any
checkpointing based fault tolerance in both fault free
and faulty case. Another overhead associate with sender
based pessimistic logging is due to huge amount of
messages. These huge amounts of messages must be
kept in memory. These not only lower the performance
but require larger amount of stable storage in general
performance of checkpointing technique is very low.
Researcher proposed replication based check-pointing to
improve the performance [11].There are many issues
related to replication based check pointing fault-
tolerance technique. These issues are mainly degree of
replication, check pointing storage type and location,
check pointing frequency, check point size and check
point run time. At the same time researcher suggested a
adaptive check pointing and replication to dynamically
adapt the check pointing frequency and the number of
replicas as a reaction on changing system properties
(number of active resources, resource failure frequency
and system load)[12].

E. Automatic multiple fault detection and recovery

One of issue with multiple fault tolerance is
automatic detection and recovery. Uncoordinated
checkpointing with optimistic or causal message
logging is combined to achieve automatic multiple fault
tolerance in distributed system. A distributed system
must tolerate n number of multiple faults but in reality
none of system is available who can tolerate multiple
tolerate automatically [2] A critical aspect for an
automatic recovery is the availability of checkpoint files:
If a resource becomes unavailable, it is very likely that
the associated storage is also unreachable due to a
network partition. A strategy to increase the availability
of checkpoints is replication . Replication is number of
copies of checkpointing. Migol is a framework for
automatic recovery in grid application based on
replication [3].

F. Memory requirement

In order to tolerate multiple faults, memory
requirement should be low or medium but not large.
Message logging stores all transit messages on reliable
media. In that case require a large number of non
computational reliable resources [10].In order provide
multiple fault capability this memory requirement
because very huge. If the MPI implementation is to
tolerate n concurrent faults (n being the number of MPI
processes), then a reliable coordinator and a set of
reliable remote checkpoint servers should be used.

Multiple fault capability can be increased using
replication based checkpointing. N number of replicas
can handle atleast N number of faults. But areplication
protocol must be practical and simple. The protocol
must provide rigorously-proven yet simply-stated
consistency guarantee with a reasonable performance.
Niobe is such protocol purposed by researcher
[13].Number of replicas must be sufficient. Large
numbers of replicas will increase the cost of maintaining
the consistency. Less number of replicas will affect the
performance, scalability and multiple fault tolerance
capability. Therefore, reasonable number replicas must
be estimate as per system configuration and load. .
Researcher proposed adaptive replicas creation
algorithm [14].There is further research scope to
develop improved algorithm to maintain a rational
replica number. Replica on demand is a feature that can
be implemented to make more adaptive, flexible and
dynamic. There is research scope to further improve
protocols to achieve replication efficiently. There are
some crucial requirements with replication protocol.
These crucial requirements are support for a flexible
number of replicas, strict consistency in the presence of
network, disk, and machine failures and efficient
common case read and write operations without
requiring potentially expensive two or three-phase
commit protocols.

G. Synchronization

Checkpointing must no rely on global
synchronization because some nodes may leave or join
the distributed system in dynamically manner.

H. Domio Effect and roll back propagation

This is an undesirable feature generally with
uncoordinated checkpointing with message logging.
Uncoordinated checkpointing is based on inter process
communication, Message are logged independently and
in order to get complete description of failed process
these inter process dependencies may force some
healthy process to roll back. This roll back of healthy
process is called rollback propagation. This rollback
may bring system at initial stage with loss of all
computation. This situation is called domio effect [9]

I. Storage strategy

Performance of checkpointing technique depends
upon storage strategy. Central dedicated servers and
network storage are generally used a storage for
checkpointing [15] [16] [17]. Although it is simple
strategy to store the checkpoints but performance is low
because all load of checkpointing is on central storage.

Amir Massoud Bidgoil et al IJCSET |February 2012| Vol 2, Issue 2,908-912

910

So overheads are very high. Further these central or
network storage are single point failure. Scalability of
central storage is also low. Performance can be
improved if loads of checkpointing can be distributed
evenly over all node involved in computation. John Paul
Walter suggested Replication based checkpointing that
distributed checkpointing over all computational loads
[11].Performance and scalability is improved on cost of
consistency. Replication based checkpointing methods
need more care attention related to consistency like
degree of replica, consistency among replica, replica on
demand etc. Consistency among replicas is a major
issue. Multiple copies of same entity causes problem of
consistency due to update of any copy by one of the user.
A replication protocol must ensure the consistency
among all replicas. [18]. The major issues with
checkpointing storage are capacity, scalability,
performance and overheads. Different storages which is
used for checkpointing are parallel file system, centre
storage, distributed storage area, network storage, disk
etc. replica consistency usually requires deterministic
replica behavior [14].Researcher proposed an algorithm
uses both active and passive strategies to implement
optimistic replication protocol [18]. Researcher also
proposed a simple protocol by combining the token with
cache. This gives benefits of token as well as cache
[3].There is still need of more simple, adaptive and
practical replication protocol with adequate and
sufficient ensured consistency [19].

J. Levels of checkpointing

There are mainly three level of checkpointing. These
levels are kernel level, user level and application level.
Kernel level works as kernel. It is easy but depends
upon operating system. User level checkpointing acts as
a library. Portability is high but on the cost of limited
access to kernel specific attributed. In user level
programmer put the location of checkpointing in
programming. Researcher propose operational level
checkpointing to lower the cost of recovery.

K. Scheduling of checkpointing:

Scheduling of checkpointing decide the overall
performance of checkpointing. Improved scheduling
approaches are suggested to reduce the various
overheads like computational overhead, storage
overheads and transfer overheads of checkpoints. Wang
et al. moves checkpoint data to centralized storage in
smaller groups. However, their results are limited to 16
nodes, making the scalability of their solution
unknown[20]. Jung et al. show that the overhead of
SAN-based checkpoint storage may be partially
mitigated by first storing checkpoints locally before
serializing their transfer to a SAN. To help improve the
performance of checkpointing, particularly the
checkpointing delay due to shared storage, they propose
a group-based checkpointing solution that divides
processes into multiple (smaller) checkpointing groups.
Each group checkpoints individually in an effort to
reduce the checkpointing overhead. In order to achieve
low overhead, however, their solution requires that non
checkpointing groups make computational progress
during other groups’ checkpoints. This requires that the

processes be divided into groups according to their
communication patterns, which in turn requires
information from the user [1].

L. Checkpointing overheads

Checkpointing overhead consist of coordination time,
memory write time, and continue time. The coordination
phase includes the time needed to quiesce the network
channels/exchange bookmarks. The memory write time
consists of the time needed to checkpoint the entire
memory footprint of a single process and writes it to a
local disk. Finally, the continue phase includes the time
needed to synchronize and resume the computation. On
occasion, particularly with large memory footprints, the
continue phase can seem disproportionately long. This
is due to some nodes’ slower checkpoint/file writing
performance, forcing the faster nodes to wait [11]. By
appropriate scheduling in checkpointing in such a way
based on its computational power these continue phase
can be minimized. Thus, the time required to checkpoint
the entire system is largely dependent on the time
needed to write the memory footprint of the individual
nodes.

M. Checkpointing Interval & frequency

Checkpointing time interval is the time elapsed
between two successive checkpoints. Checkpointing
frequency is number of checkpoint taken for a particular
node for a given amount of time. Checkpointing
frequency is reciprocal of checkpointing time interval,
various overheads component of checkpointing also
depends upon checkpointing frequency. As frequency is
reduced overheads also reduces because it’s take less
time to write footprints to memory. Checkpointing size
and frequency must be varying as per trend and potency
of dynamism of distributed system.

IV. COMPARISON

In this section we compared coordinated and
uncoordinated checkpointing on the basis of some
important critical factors discussed in section V

TABLE1

COMPARISON TABLE

Issue
Coordinate

checkpointing
Uncoordinated
checkpointing

Consistency More less

Recovery tine More less

Performance Low High

Single Faults Yes Yes

Multiple Faults No Yes

Frequent Failures No Yes

Automatic No Yes
Domio Effect a
Roll back
propagation

No

Yes

Overhead Less More

Protocol Simple Complex

Scheduling Less Complex Complex

Amir Massoud Bidgoil et al IJCSET |February 2012| Vol 2, Issue 2,908-912

911

V. CONCLUSION

We have discussed many issues of checkpointing
based recovery for multiple faults. These issues are
discussed as an impact of overall performance of
distributed system. For distributed system performance
and efficiency are important. Some issues are not
relevant with coordinate checkpointing but relevant with
uncoordinated checkpointing. Better performance and
efficiency can be achieved by improved storage strategy
and lowering the overheads associate with
checkpointing. Write time can be reduced by addressing
the issue related the storage strategy. Likewise by
scheduling the load of checkpointing equally and evenly
over all computing nodes can improve the performance,
reduces overheads and cost of checkpointing multiple
fault tolerance capability with performance can be
achieved by optimizing the replicas and producing the
replica on demand. An adaptive replica may further
reduce the consistency cost.

Various overhead like memory write time,
coordination time, continue time are different with
different checkpoint size and checkpointing frequency.
These overheads need to optimize as a function of size
of frequency. Scalability of checkpointing can be further
improved by improved replicated checkpointing.

REFERENCES
[1] H. Jung, D. Shin, H. Kim, and Heon Y. Lee, “Design and

Implementation of Multiple FaultTolerant MPI over Myrinet
(M3) ,” SC|05 Nov 1218,2005, Seattle, Washington, USA
Copyright 2005 ACM

[2] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A
survey of rollback-recovery protocols in message passing
systems. Technical Report CMU-CS-96-81, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, USA,
October 1996

[3] X. China, “Token-Based Sequential Consistency in
Asynchronous Distributed System ,” 17 th Internaional
Conference on Advanced Information Networking and
Applications (AINA'03),March 27-29, ISBN: 0-7695-1906-7

[4] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita,E.
Rodriguez, and F. Cappello, “MPI Tools and Performance
Studies—Blocking versus Non-Blocking Coordinated
Checkpointing for Large-Scale Fault Tolerant MPI,” Proc. 18th
Ann. Supercomputing Conf. (SC ’06), pp. 127-140, 2006

[5] Emil Vassev, Que Thu Dung Nguyen and Heng Kuang, “Fault-
Tolerance through Message-logging and Check-pointing,”
Technical Report Corcodia University.

[6] L. Alvisi and K. Marzullo. Message logging : Pessimistic,
optimistic, and causal. In Proceedings of the 15th International
Conference on Distributed Computing,Systems (ICDCS 1995),
pages ,229–236. IEEE CS Press, May-June 1995.

[7] X. Yang, Y. Du, Panfeng W. Fu, and Jia “FTPA: Supporting
Fault-Tolerant Parallel Computing through Parallel
Recomputing,” Ieee Transactions On Parallel And Distributed
Systems, Vol. 20, No. 10, October 2009

[8] S. Gorender, and M Raynal, “An Adaptive Programming Model
for Fault-Tolerant Distributed Computing” Ieee Transactions On
Dependable And Secure Computing, Vol. 4, No. 1, January-
March 2007.

[9] S. Jafar, A. Krings, and T. Gautier,” Flexible Rollback Recovery
in Dynamic Heterogeneous Grid Computing”, IEEE
Transactions On Dependable and Secure Computing, Vol. 6, No.
1, Jan-Mar 2009

[10] A. Bouteiller, F. Cappello, T. H Krawezik, Pi Lemarinier, F
Magniette, “MPICH-V2: a Fault Tolerant MPI for Volatile
Nodes based on Pessimistic Sender Based Message Logging, ”
SC’03, NoV 15-21, 2003, Phoenix, Arizona, USA Copyright
2003 ACM 1-58113-695-1/03/001...

[11] J. Walters and V. Chaudhary,” Replication-Based Fault
Tolerance for MPI Applications,” Ieee Transactions On Parallel
And Distributed Systems, Vol. 20, No. 7, July 2009

[12] M Chtepen, F.. Claeys, B. Dhoedt, P. Demeester, , and P.
Vanrolleghem,” Adaptive Task Checkpointing and
Replication:Toward Efficient Fault-Tolerant Grids”, IEE
ransactions on Parallel and Distributed Systems, Vol. 20, No. 2,
Feb 2009

[13] J Maccormick1, C Thekkath, M.Jager,K. Roomp, and L.
Peterson , “Niobe: A Practical Replication Protocol.” ACM
Journal Name, Vol. V, No. N, Month 20YY.

[14] Cao Huaihu, Zhu Jianming, “An Adaptive Replicas Creation
Algorithm with Fault Tolerance in the Distributed Storage
Network” 2008 IEEE

[15] H.P. Reiser, M.J. Danel, and F.J. Hauck., “ A flexible replication
framework for scalable andreliable .net services.,” In Proc. of
the IADIS Int. Conf. on Applied Computing, volume1, pages
161–169, 2005

[16] Q. Gao, W. Yu, W. Huang, and D.K. Panda, “Application-
Transparent Checkpoint/Restart for MPI Programs over Infini-
Band,” Proc. 35th Ann. Int’l Conf. Parallel Processing (ICPP
’06), pp. 471-478, 2006.

[17] S. Sankaran, J.M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P.
Hargrove, and E. Roman, “The LAM/MPI Checkpoint/Restart
Framework: System-Initiated Checkpointing,” Int’l J. High
Performance Computing Applications, vol. 19, no. 4, pp. 479-
493, 2005.

[18] A. Kale, U. Bharambe, “Highly available fault tolerant
distributed computing using reflection and replication,”
Proceedings of the International Conference on Advances in
Computing, Communication and Control ,Mumbai, India Pages:
251-256 ,: 2009 .

[19] Andr´e Luckow Bettina Schnor,“Adaptive Checkpoint
Replication for Supporting the Fault Tolerance of Applications
in the Grid,“ Seventh IEEE International Symposium on
Network Computing and Applications, 978-0-7695-3192-2/08
$25.00 © 2008 IEEE.

[20] C. Wang, F. Mueller, C. Engelmann, and S.L. Scott, “A Job
Pause Service under LAM/MPIþBLCR for Transparent Fault
Tolerance,”Proc. 21st Int’l Parallel and Distributed Processing
Symp.(IPDPS ’07), pp. 116-125, 2007.

Amir Massoud Bidgoil et al IJCSET |February 2012| Vol 2, Issue 2,908-912

912

